ПОТЕРИ ЭНЕРГИИ ПРИ СТОЛКОВЕНИЯХ РЕЛЯТИВИСТСКИХ СТРУКТУРНЫХ ТЯЖЕЛЫХ ИОННОВ С АТОМАМИ

Развитие непертурбативная теория потерь энергии при столкновениях движущихся с релятивистскими скоростями структурных высокозарядных тяжёлых ионов с атомами. Под структурными ионами в рамках данной работы понимаются ионы, содержащие частично заполненные электронные оболочки. Именно такие ионы, как правило, имеющие значительный заряд (например, полностью или частично обладанные ионы урана), и используются во многих современных экспериментах на ускорителях тяжёлых ионов.

Известно, что непрерывные процессы, сопровождающие столкновения релятивистских ионов достаточно больших зарядов с атомами, не могут быть описаны [1, 2] в рамках теории возмущений даже при сколь угодно больших энергиях столкновения. В качестве непертурбативных подходов приведёт работы [3–7], использующие приближение внешних возмущений, работы [8–10] в приближении эйконала и его модификаций, расчёты [11] на основе численного решения временного уравнения Дира, а также недавно найденное точное решение [12, 13] уравнения Дира в ультраэлектронном пределе. Непертурбативный подход, основанный на обобщении приближения Глаубера на случай непрерывных столкновений релятивистских ионов с атомами, предложен в работах [14, 15]. Учёт конечного размера ядра галогенного иона в рамках этого подхода проделан в [16]. Последовательная непертурбативная теория потерь энергии релятивистских ионов на свободных электронах развита в работе [17]. Однако при движении быстрого иона в среде в результате процессов перезарядки и потерь электронов устанавливается некоторый равновесный заряд иона, меньший заряд галогенного иона. При расчётах торможения поле экранированного иона обычно описывается как поле точечного заряда, хотя в принципе ясно, что при столкновениях с малыми параметрами удара или большими переданными импульсами ион ведёт себя как галогенный ион, а при столкновениях с большими параметрами удара или малыми переданными импульсами ион ведёт себя как экранированный ион. Другими словами, представляется необходимым [18] рассматривать тормозящийся ион как точечную частицу, а как протяженную структурную частицу размером порядка размера электронных оболочек, на которых расположены электроны при установившемся равновесном заряде иона. Подобные эффекты рассматривались в работе [5] в рамках теории возмущений, областях применимости которой требует выполнения неравенства $Z / v < 1$, где Z – заряд налетающей частицы; v – относительная скорость столкновения (для ионов, для дальнейших, используемых атомных единиц $h = m_e = e = 1$). Для последовательного же учёта наличия электронной "шубы" тяжёлого релятивистского иона необходимо непертурбативное рассмотрение. Тем более, что в последнее время выполнены эксперименты, где исследованы потери энергии ионов настолько больших зарядов, что для них область применимости боровского приближения, строго говоря, не достигается [1] даже при $v \approx c$ (c – скорость света), так что часто оказывается $Z / v \approx 1$ (см., например, [17, 19, 20] и указанные там ссылки).

В настоящей работе развита непертурбативная теория потерь энергии при столкновениях, движущихся с релятивистскими скоростями структурных высокозарядных тяжёлых ионов с атомами. Получена простая формула для эффективного торможения.

Для простоты рассмотрим сначала столкновение релятивистского многоэлектронного иона с атомом водорода. Согласно [8], весь интервал $0 < b < \infty$ возможных значений параметра удара b можно разбить на три области:

А) $0 < b < b_1$; \quad В) $b_1 < b < b_0$; \quad С) $b_0 < b < \infty$,

(1)

соответствующие малым, средним и большим параметрам удара. Значения границ областей следующие:

$b_1 = 1$, \quad $b_0 = v \sqrt{2}$; \quad $\gamma = 1 / \sqrt{1 - \beta^2}$; \quad $\beta = v / c$.

Вычислим эффективное торможение κ в каждой из областей (1) и получим полное эффективное торможение, сложив вклады от трёх областей. При этом точные значения границ для нас несущественны, поскольку зависимость κ в каждой области от параметров b_1 и b_0 оказыва-
есть логарифмической, что приводит к корректировке сшивке вкладов смежных областей и выпадению в окончательном ответе зависимости κ от параметров сшивки b_1 и b_0.

А) Область малых параметров удара: $0 < b < b_1$

При столкновениях с малыми параметрами удара или большими переданными импульсами можно считать [21] атомные электроны свободными и покоящимися до рассеяния, а ион описывать как голый неэкранированный заряд Z. Это позволяет воспользоваться результатом [17]. Причём согласно численным расчетам до $\gamma \sim 10$ и зарядов иона ≤ 92 потери энергии можно представить в часто используемом виде

$$\kappa(b < b_1) = \frac{4\pi Z^2}{\lambda^2} \left(L_{\text{pert}} + \Delta L_{\text{Bloch}} + \Delta L_{\text{Mott}} \right),$$

где

$$L_{\text{pert}} = \ln(b_1 \gamma \eta n) - \frac{1}{2} B^2,$$

а поправки Блоха [22] ΔL_{Bloch} и Мотта [23] ΔL_{Mott} эффективно отличаются от нуля [17] лишь при малых параметрах удара.

Б) Промежуточная область: $b_1 < b < b_0$

Ограничившимся рассмотрением столкновений с нерелятивистскими атомами. Тем не менее наше описание будет носить общий характер и результаты останутся справедливыми и для столкновений с тяжёлыми атомами по той причине, что основной вклад в ионизационные потери на тяжёлых атомах вносит электроны внешних оболочек, поскольку именно на них расположено подавляющее число атомных электронов, и они являются нерелятивистскими. Следуя [5, 24], будем считать, что ядро налетающего иона имеет заряд Z, а его N электронов распределены вокруг ядра с плотностью

$$\rho(r) = -\frac{N_i \lambda}{4\pi \lambda^3} e^{-r/\lambda},$$

где λ – параметр экранирования, равный

$$\lambda = g \frac{v^{2/3}}{1 - v/7} \frac{1}{Z^{1/3}}; \quad g = 0,3 \left(3\pi^2 / 50\right) \Gamma(1/3) = 0,48,$$

где мы ввели относительное число электронов иона $v = N/Z$. Кулоновское взаимодействие иона, расположенного в точке R, с атомным электроном, расположенным в точке r, имеет вид

$$U(R; r) = -\frac{Z(1-v)}{|r - R|} \frac{Zv}{|r - R|} \exp \left(-\frac{1}{\lambda} |r - R| \right).$$

Обычно координаты иона и электрона записывают, вводя прицельный параметр b и s-проекцию координат атомного электрона r на плоскость параметра удара: $R = (X, b), r = (x, s)$. Сечение перехода атома водорода из состояния $|0>$ в состояние $|n>$ в результате столкновения с нерелятивистским ионом в приближении эйконала имеет вид [8]

$$\sigma_n = \left| \int d^2 b \left| \langle n | 1 - \exp \left(-\frac{i}{\lambda} \int dX U(R; r) \right) | 0 \rangle \right|^2 \right|^2.$$

Нетрудно убедиться [3], что в области $b_1 < b < b_0$ параметров удара атомный электрон получает в результате столкновения импульс $<< c$ и может считаться до и после столкновения нерелятивистским. Именно это позволяет использовать для сечений формулу (4) с потенциалом в виде статического кулоновского. Стандартный прием [6] при вычислении эйкональной фазы для кулоновского потенциала состоит в следующем: $U(R; r) = U((X, b); (x, s))$ заменяют на $U((X, b); (x, s))) = U((X, b); (x, s)) - U((X, b); (x, 0))$ и интеграл от U' по dX записывают, опуская штрихи. В результате интегрирования

$$-\frac{i}{\lambda} \int_{-\infty}^{+\infty} U dX = -2i \frac{Z'}{\lambda} \ln \left| \frac{b - s}{b} \right| + 2\lambda \frac{Z'}{\lambda} \left[K_0 \left(\frac{|b - s| \lambda}{b} \right) - K_0 \left(\frac{b \lambda}{b} \right) \right],$$.}

где $Z' = Z(1-v); K_0(x)$ и $K_1(x)$ – функции Макдональда. Специфика столкновений ионов больших зарядов с атомами состоит в том, что сечения неупругих процессов, как правило, довольно ве-
лики и существенно превышают атомные размеры. Имея в виду это обстоятельство, будем считать, что \(s/b << 1 \), тогда (5) можно переписать так:

\[
-\frac{i}{\nu} \int U \, dX = iq_s ,
\]

где вектор

\[
q = \frac{2Z^+}{\nu b} \left[1 + \frac{v}{1 - \nu \frac{b}{\lambda}} K_i \left(\frac{b}{\lambda} \right) \right] \frac{b}{\nu} ,
\]

очевидно, имеет смысл импульса, передаваемого атомному электрону при его столкновении с ионом при значении параметра удара \(b \). Причем предельные значения \(q \) имеют прозрачный физический смысл: при \(b \to \infty \) \(q \to 2Z(1-\nu)b/\nu b^2 \), что соответствует рассеянию на экранированном ионе заряда \(Z(1-\nu) \); при \(b \to 0 \) \(q \to 2Zb/(\nu b^2) \), что соответствует рассеянию на голом ионе заряда \(Z \). Таким образом, сечение неупругого процесса представляется в виде

\[
\sigma_n = \int d^2b |\langle n| \exp(\text{i}qr)|0 \rangle|^2 = \int d^2b |f_{0n}|^2 ,
\]

где обобщенный неупругий формфактор \(f_{0n} = \langle n| \exp(\text{i}qr)|0 \rangle \). Эффективное торможение

\[
\kappa = \sum_n (\epsilon_n - \epsilon_0) |d^2b| f_{0n}|^2 ,
\]

где \(f = \exp(\text{i}qr) \). Следуя [25], легко получить, что

\[
\sum_n (\epsilon_n - \epsilon_0) |f_{0n}|^2 = \frac{1}{2} \left(\nabla f \cdot \nabla f^+ \right)_{00} - \frac{1}{2} q^2 .
\]

Поэтому полное эффективное торможение в области \((b_1 < b < b_0) \) представляет собой:

\[
\kappa(b_1 < b < b_0) = \frac{1}{2} \int_{b_1}^{b_0} q^2 2\pi b db = 4\pi Z^2 (1-\nu)^2 v^2 \left[I_1 + I_2 + I_3 \right] ,
\]

где при выполнении условий \(b_1/\lambda << 1 \), \(b_0/\lambda >> 1 \)

\[
I_1 = \int_{b_1}^{b_0} \frac{db}{b} = \ln \frac{b_0}{b_1} , \quad I_2 = \frac{2v}{(1-\nu)} \ln \frac{2\lambda}{\eta b_1} , \quad I_3 = \frac{v^2}{(1-\nu)^2} \ln \frac{2\lambda}{\eta b_1} .
\]

Подставляя эти значения в формулу (9), находим вклад в эффективное торможение от области промежуточных значений параметра удара:

\[
\kappa(b_1 < b < b_0) = 4\pi Z^2 (1-\nu)^2 \ln b_0 + 4\pi Z^2 v^2 \ln \left[\frac{1}{b_1^2} \left(\frac{2\lambda}{\eta} \right)^{2-\nu} \right] .
\]

(10)

С) Область больших параметров удара: \(b_0 < b < \infty \)

Здесь взаимодействие налетающего иона с атомом может быть учтено по теории возмущений. Причём для больших параметров удара на атом действует поле экранированного иона, т.е. видимый заряд иона равен \(Z' = Z(1-\nu) \). Соответствующее эффективное торможение равно [8]

\[
\kappa(b > b_0) = 4\pi Z^2 (1-\nu)^2 v^2 \left[\ln \frac{2v}{\eta b_0 \sqrt{1-\beta^2}} - \beta^2 \right] .
\]

(11)

где \(\eta = \exp B = 1.781 \) \((B = 0.5772 \) – постоянная Эйлера), и, следуя [21], мы ввели "среднюю" атомную энергию \(I \).

Полное торможение получаем, суммируя вклады от трех областей:

\[
\kappa = \kappa(b < b_1) + \kappa(b_1 < b < b_0) + \kappa(b > b_0) .
\]

В результате

\[
\kappa = 4\pi Z^2 (1-\nu)^2 \left[\ln \frac{2v}{\eta I \sqrt{1-\beta^2}} - \beta^2 \right] .
\]
$$+ \frac{4 \pi Z^2}{v^2} \left(\ln \frac{\eta v^2}{\sqrt{1-\beta^2}} - \frac{\beta^2}{2} + \ln \left(\frac{2 \lambda}{\eta} \right)^{v(2-v)} \right) + \Delta L_{\text{BLOCH}} + \Delta L_{\text{MOTT}}.$$ (12)

Приведём для сравнения эффективное торможение [26] точечного ядра заряда Z':

$$\kappa_{\text{point}} = 4 \pi \left(\frac{Z'}{v} \right)^2 \left(\ln \frac{2 v^2}{I (1-\beta^2)} - \beta^2 + \Delta L_{\text{BLOCH}} + \Delta L_{\text{MOTT}} \right).$$ (13)

Для описания поправки за счёт протяжённости заряда иона введём относительную поправку $\chi = (\kappa - \kappa_{\text{point}}) / \kappa_{\text{point}}$. Поведение относительной поправки χ представлено на рис. 1.

Поэтому могут быть сделаны следующие выводы. Учёт протяжённости заряда иона приводит к возрастанию эффективного торможения иона к по сравнению с торможением κ_{point} точечного ядра того же заряда Z'. Причём порядок роста потери энергии может быть оценен как $(\kappa - \kappa_{\text{point}}) / \kappa_{\text{point}} \sim v$, где $v = N / Z$ – относительное число электронов на оболочках иона. Так, например, ион урана с 10 электронами в связанных состояниях испытывает торможение примерно на 10% больше, чем движущееся с той же энергией гораздо точечное ядро того же заряда и массы.

Авторы благодарят Министерство образования Российской Федерации и Российский фонд фундаментальных исследований за финансовую поддержку работы.

СПИСОК ЛИТЕРАТУРЫ

Поморский госуниверситет им. М.В. Ломоносова
Поступила в редакцию 01.06.01.