К теории ионного распыления металла в виде нейтральных и заряженных кластеров

Предложен метод расчета процессов упругого распыления металла в виде больших (c числом атомов $N \geq 5$) нейтральных и заряженных кластеров при ионной бомбардировке. Результат представлен в виде простой асимптотической формулы для вероятности вылета кластера и его зарядового состояния. Делается вывод об экспоненциальном характере зависимости полного выхода кластеров от числа атомов N в их составе.

Явление ионного распыления твердых тел является объектом интенсивных экспериментальных и теоретических исследований (см., например, обзоры [1–5]). Продукты распыления состоят из различного количества атомов мишени (см., например, эксперименты [6, 7]). Теория распыления в виде одиночных атомов мишени хорошо разработана [1] и в значительной степени базируется на так называемом каскадном механизме распыления, предложенном в [8]. Механизмы же распыления в виде связанных двух или большего количества атомов мишени (кластеров) представляют, и до настоящего времени, объект дискуссии [1, 2] и характеризуются отсутствием общепринятых расчетных методов и адекватного теоретического обоснования. Последовательные расчеты и теоретическое описание процессов распыления крайне затруднены, прежде всего, существенно многочастичным характером задачи. Надежды на выполнение расчетов "из первых принципов" в настоящее время связываются [1] (см. также [9–11]) с компьютерным моделированием методами молекулярной динамики. Однако такие расчеты сложны в техническом отношении, особенно с ростом числа атомов в кластере, и трудно воспроизводимы другими, кроме авторов расчетов, исследователями. Трудности значительно возрастают при включении в схему расчетов процессов формирования зарядового состава продуктов распыления (см., например, обзор [12]). Поэтому значительное число экспериментальных работ посвящено эмпирическому поиску закономерностей распыления. В частности, к настоящему времени остается невыясненным [13] вопрос о степени [6] или экспоненциальном характере зависимости полного выхода кластеров от числа атомов в их составе.

Используя физические представления, развитые в работах [14–17], рассмотрим теорию распыления металла в виде больших (c числом атомов $N \geq 5$) нейтральных и заряженных кластеров под действием ионной бомбардировки. Принципиальное и нетривиальное отличие настоящей работы от подхода в [14–17] состоит в следующем. Мы более последовательно и единообразно описывали движения атомов, входящих в состав кластера, и движение его центра масс, что привело к выражениям для вероятности вылета кластера, удовлетворяяющим условию унитарности (очевидно, нарушенном в подхде [14–17]). Именно это позволило нам провести все выкладки аналитически и представить окончательный результат в виде простой асимптотической формулы для вероятности вылета кластера и его зарядового состояния, что позволяет сделать определенный вывод об экспоненциальном характере зависимости полного выхода кластеров от числа атомов.

Будем считать твердое тело образованным из атомов, каждый из которых находится в осцилляторной яме глубиной Δ и имеет собственную частоту ω. Другими словами, мы используем обрезанный осцилляторный потенциал. Характерный период колебаний $T = 2\pi/\omega$. Пусть скорость падающего иона такова, что за время $\tau < T$ ион и быстрые атомы отдачи, при движении в металле, претерпевают большое число столкновений, в результате которых атомы металла получают некоторые импульсы q_i, где i – номер атома. Неравенство $\tau < T$ позволяет сформулировать это иначе: результат пролета иона сквозь систему осцилляторов сводится к мгновенной и одновременной передаче осцилляторам импульсов q_i ($i = 1, 2, ..., N$), где N – число осцилляторов. Далее будем считать все q_i независимыми, а все направления – равновероятными. Вероятность обнаружить систему из N осцилляторов (которым мгновен-
но переданы импульсы q_i в конечных связанных состояниях с центром масс, движущимся с импульсом k, является целью расчета. Именно при выполнении последнего условия система из N осцилляторов будет двигаться как целое с импульсом k.

Для расчета вероятности таких событий, соответствующих коррелированному отрыву блока атомов, проще всего воспользоваться аппаратом квантовой механики. Будем придерживаться модели Эйнштейна и заменим блок из N атомов на систему из N независимых однанковых осцилляторов с собственной частотой ω. Соответствующая волновая функция имеет вид

$$\Psi_i = \Phi(R)\phi_1(r_1)\phi_2(r_2)\ldots\phi_N(r_N),$$

где $\Phi(R)$ – волновая функция центра масс блока из N атомов; R – координаты центра масс. Результат пролета иона сквозь систему осцилляторов сводится к мгновенной и одновременной передаче импульсов q_i и прообразует волновую функцию (1) к виду

$$\exp\left(\frac{i}{\hbar}\sum_{i=1}^{N} q_i R\right)\Phi(R)\exp\left(\frac{i}{\hbar}q_1 r_1\right)\phi_1(r_1)\exp\left(\frac{i}{\hbar}q_2 r_2\right)\phi_2(r_2)\ldots\exp\left(\frac{i}{\hbar}q_N r_N\right)\phi(r_N).$$

Будем считать, что до получения импульсов q_i все осцилляторы находились в основных состояниях, т.е. $\phi_1 = \phi_2 = \ldots = \phi_N = \phi_0$, $\Phi = \Phi_0$. Поэтому амплитуда вероятности обнаружить произвольное конечное состояние $\Psi_f = \Phi_k(R)\phi_1(r_1)\phi_2(r_2)\ldots\phi_N(r_N)$ с центром масс в состоянии непрерывного спектра с импульсом k определяется проекцией состояния Ψ_i на состояние (2). Квадрат модуля амплитуды (после суммирования по квантовым числам n_i каждого осциллятора с условием $n = \sum_{i=1}^{N} n_i$, где n имеет смысл главного квантового числа системы из N осцилляторов) равен

$$W_k^{(n)} = \frac{1}{n!}\left[\frac{1}{2\hbar^2\alpha^2}\sum_{i=1}^{N} q_i^2\right]^{n/2}\exp\left[-\frac{1}{2\hbar^2\alpha^2}\sum_{i=1}^{N} q_i^2\right]\left|\Phi_k(R)\right|^2\left|\Phi_0(R)\right|^2,$$

где $\alpha^2 = m\omega/\hbar$; m – масса осциллятора (атома). Для суммирования использованы результаты Ферми [18, ст. 74; см. также [14–17, 19]. Это и есть вероятность вылета кластера из N атомов как целого с импульсом k и в состоянии возбуждения n. Нас интересует вылет только стабильных кластеров. Поэтому следует просуммировать $W_k^{(n)}$ по всем состояниям колебательного возбуждения n меньших некоторого n_0, когда энергии, запасенной в возбужденных осцилляторах, хватит на развал кластера. Для этого достаточно считать, что $n_0 \approx \Delta/\hbar\omega$, когда энергии колебаний всех осцилляторов хватает на выбор одного атома из ямы глубиной Δ. Далее, полная вероятность обнаружить центр масс в непрерывном спектре может быть получена интегрированием по всем k. Однако удобнее получить эту вероятность путем суммирования по всем связанным состояниям $\Phi_k(R)$ центра масс до некоторого $n = k_0$ (выбор которого описан ниже), с последующим вычитанием из единицы. В результате для $N >> 1$

$$W_N = \left[1 - \exp\left(-\frac{1}{k_0}\frac{1}{2\hbar^2}\sum_{i=1}^{N} q_i^2\right)\right]^{N/2}\exp\left(-\frac{1}{n_0}\frac{1}{2\hbar^2\alpha^2}\sum_{i=1}^{N} q_i^2\right).$$

Здесь введено обозначение $\beta^2 = m\Omega_0^2/\hbar$, где Ω – частота колебаний центра масс. Опшем процедуру получения k_0. Считаем, что центр масс блока из N атомов совершает гармонические колебания с частотой Ω в потенциальной яме глубиной U_0, которую мы будем называть энергией связи кластера с металлом. Такая энергия связи пропорциональна площади поверхности S_0, по которой блок из N атомов соприкасается с остальным металлом. Предположим, что это полусфера с центром, лежащим на поверхности металла до распыления. Тогда [14] $U_N = \delta S_0 = \delta N^{2/3}$. Таким образом, мы различим δ – долго энергии связи кластера с осталным металлом, отнесенную к одному атому в составе кластера, и Δ – глубину потенциальной ямы, в которой находится каждый атом твердого тела. Очевидно, что в формуле (4) $k_0 = U_N/(\hbar\Omega)$.

Далее следует усреднить вероятность (4) по всем возможным значениям q_i, $i = (1, 2, ..., N)$. Сделаем естественное предположение относительно распределения значений q_i: считаем все q_i независимыми, а все направления q_i – равновероятными и возьмем, как в [14–17], среднее по углам Ω_{q_i} векторов q_i. Дальнейшие выкладки значительно упрощаются, если считать,
что все q_i имеют одинаковую длину $|q_i| = q$, то есть в среднем все q_i одинаковы по величине, но направлены хаотично. В результате при $N \gg 1$ вероятность примет вид

$$W_N = \left[1 - \left(1 + N \frac{2}{3} \frac{q^2}{(k_0)^2} \right)^{\frac{3}{2}} \exp \left(-N \frac{\delta}{\Delta (k_0)^2} \right) \right],$$

(5)

где $k_0 = (2m\delta)^{1/2}$. Таким образом, мы вычислили вероятность отрыва кластера как целого (блока) без перемены мест атомов относительно друг друга.

Процесс формирования зарядового состава является составной частью механизма распыления. Наиболее дальнейшее рассмотрение существенно использует положение, согласно которому больше кластера вылетают как целое в виде блока атомов. Именно последнее позволяет определить зарядовое состояние блока из N атомов. Для этого, как и при статистическом выводе [20] формулы Саха – Ленгмюра, будем считать, что по мере удаления кластера от поверхности металла до некоторого расстояния (называемого критическим) ξ возможен обмен между электронами зоны проводимости металла и электронами атомов, входящих в состав кластера. При удалении кластера от металла на расстояния, превышающие ξ, электронный обмен неadiабатически прекращается. Тогда, согласно [17, 21], вероятность $P_N(Q)$ N-атомному кластеру иметь после вылета заряд Qe ($-e$ – заряд электрона) определяется исходя из стандартной формулы для вероятности флуктуаций:

$$P_N(Q) = \frac{1}{D_N} \exp \left(-\frac{1}{2} \frac{Q^2}{(\Delta Q_N)^2} \right),$$

$$\frac{(\Delta Q_N)^2}{\Delta Q_N} = \frac{3}{4} \frac{m_e \theta}{h^2} \left(\frac{V}{N} \right)^{2/3} \frac{1}{\gamma^3} N,$$

(6)

где нормирующий множитель D_N определяется путем суммирования по всем возможным значениям $Q = 0, \pm 1, \pm 2, ..., a (\Delta Q_N)^2$ – средний квадрат отклонений заряда кластера от равновесного значения; m_e – масса электрона зоны проводимости; V – объем кластера; θ – температура мишени; γ – валентность атомов металла. Таким образом, для получения вероятности W_N^Q вылета кластера с числом атомов N и зарядом Qe необходимо умножить вероятность W_N из (5) на $P_N(Q)$. В результате получаем окончательное выражение для вероятности отрыва кластера из N атомов и имеющего заряд Qe:

$$W_N^Q = \left[1 - \left(1 + N \frac{2}{3} \frac{q^2}{(k_0)^2} \right)^{\frac{3}{2}} \exp \left(-N \frac{\delta}{\Delta (k_0)^2} \right) \frac{1}{D_N} \exp \left(-\frac{1}{2} \frac{Q^2}{(\Delta Q_N)^2} \right) \right].$$

(7)

Таким образом, основным результатом настоящей работы является следующий из формулы (7) вывод об экспоненциальном характере зависимости вероятности вылета кластеров от числа атомов N в его составе.

Авторы благодарят Министерство образования Российской Федерации и Российский фонд фундаментальных исследований за финансовую поддержку работы.

СПИСОК ЛИТЕРАТУРЫ

15. Матвеев В.И., Белых С.Ф., Веревкин И.В. // ЖТФ.– 1999.– T.69.– С.64.

Поморский госуниверситет им. М.В. Ломоносова
Архангельский государственный технический университет

Поступила в редакцию 26.02.01, после доработки – 22.04.02.